Multistep-Ahead Prediction of Urban Traffic Flow Using GaTS Model

Author:

Wang Benchao12,Qin Pan1ORCID,Gu Hong1

Affiliation:

1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China

2. Department of Administration and Supervision, Liaoning Police College, Dalian 116036, China

Abstract

The mathematical models for traffic flow have been widely investigated for a lot of application, like planning transportation and easing traffic pressure by using statistics and machine learning methods. However, there remains a lot of challenging problems for various reasons. In this research, we mainly focused on three issues: (a) the data of traffic flow are nonnegative, and hereby, finding a proper probability distribution is essential; (b) the complex stochastic property of the traffic flow leads to the nonstationary variance, i.e., heteroscedasticity; and (c) the multistep-ahead prediction of the traffic flow is often of poor performance. To this end, we developed a Gamma distribution-based time series (GaTS) model. First, we transformed the original traffic flow observations into nonnegative real-valued data by using the Box-Cox transformation. Then, by specifying the generalized linear model with the Gamma distribution, the mean and variance of the distribution are regressed by the past data and homochronous terms, respectively. A Bayesian information criterion is used to select the proper Box-Cox transformation coefficients and the optimal model structures. Finally, the proposed model is applied to the urban traffic flow data achieved from Dalian city in China. The results show that the proposed GaTS has an excellent prediction performance and can represent the nonstationary stochastic property well.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3