Affiliation:
1. Graduate School of Information Security, Korea University, Seoul 02841, Republic of Korea
Abstract
The recent trend for vehicles to be connected to unspecified devices, vehicles, and infrastructure increases the potential for external threats to vehicle cybersecurity. Thus, intrusion detection is a key network security function in vehicles with open connectivity, such as self-driving and connected cars. Specifically, when a vehicle is connected to an external device through a smartphone inside the vehicle or when a vehicle communicates with external infrastructure, security technology is required to protect the software network inside the vehicle. Existing technology with this function includes vehicle gateways and intrusion detection systems. However, it is difficult to block malicious code based on application behaviors. In this study, we propose a machine learning-based data analysis method to accurately detect abnormal behaviors due to malware in large-scale network traffic in real time. First, we define a detection architecture, which is required by the intrusion detection module to detect and block malware attempting to affect the vehicle via a smartphone. Then, we propose an efficient algorithm for detecting malicious behaviors in a network environment and conduct experiments to verify algorithm accuracy and cost through comparisons with other algorithms.
Funder
Institute for Information and Communications Technology Promotion
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献