Elman Neural Network-Based Direct Lift Automatic Carrier Landing Nonsingular Terminal Sliding Mode Fault-Tolerant Control System Design

Author:

Wu Qilong1ORCID,Zhu Qidan1,Han Shuai1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Abstract

The purpose of this paper is to develop the control system using the Elman neural network (ENN) and nonsingular terminal sliding mode control (NTSMC) to improve the automatic landing capability of carrier-based aircraft based on direct lift control (DLC) when subjected to carrier air-wake disturbance and actuator failure. First, the carrier-based aircraft landing model is derived. Then, the NTSMC is proposed to ensure the system’s robustness and achieve accurate trajectory tracking performance in a finite time. Due to the inclusion of nonsingularity in NTSMC, the steady-state response of the control system can be effectively improved. In addition, the ENN is derived using an adaptive learning algorithm to approximate the actuator faults and system uncertainties. To further ensure the accurate tracking of the ideal glide path by the carrier-based aircraft, the NTSMC system using an ENN estimator is proposed. Finally, this method is tested by adding different types of actuator failures. The simulation results show that the designed longitudinal fault-tolerant carrier landing system has strong robustness and fault-tolerant ability and improves the accuracy of carrier-based aircraft landing trajectory tracking.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference35 articles.

1. Flight testing of the F/A-18E/F automatic carrier landing system;A. L. Prickett

2. Development of the F/A-18A automatic carrier landing system

3. Design and simulation of F/A-18A automatic carrier landing guidance controller;L. M. Yue

4. Adaptive observer based fault tolerant control for aircraft engine with sensors and actuators faults;L. Xiao

5. Fault tolerant longitudinal aircraft control using non‐linear integral sliding mode

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3