A Baseline-Free Electromechanical Impedance Resonance Method for Measuring the Modulus of Elasticity of Concrete Cubes Using Surface-Bonded PZT Patches

Author:

Sha Xiong1ORCID,Zhu Songye1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

The modulus of elasticity of concrete (Ec) is an essential parameter commonly used in concrete design, concrete curing monitoring, and deterioration evaluation and damage detection of concrete structures. A quick and reliable in situ determination of Ec helps in accurate decision-making for construction and maintenance. The electromechanical impedance (EMI) technique using surface-bonded lead zirconate titanate (PZT) patches (referred to as SBP) has become a popular nondestructive method for monitoring concrete structures due to ease of operations. The existing research mainly utilized baseline-dependent approaches to monitor the changes (e.g., hardening or damage evolution) of concrete structures. However, relevant baselines are greatly influenced by the status of PZT sensors and bonding layers, limiting the practical applications of this technique. This paper presents a baseline-free EMI resonance method for measuring Ec of concrete without using prior baseline data for the first time. Numerical and experimental studies on standard concrete cubes (100 mm in width) with SBP were conducted to examine the proposed method. A dimensionless physical quantity was first proposed to view the EMI signals. Then, resonance peaks highly related to concrete properties but insensitive to the status of the sensor system were selected, physically described, and correlated to the concrete parameters through numerical analyses. Finally, experimental validations, covering the measurement of Ec, repeatability of the chosen resonance peaks, and temperature effects, were conducted to illustrate the proposed method’s stability, accuracy, and sensitivity.

Funder

Research Grants Council of Hong Kong

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3