Combined AGADESN with DBSCAN Algorithm for Cluster Target Motion Intention Recognition

Author:

Xue Xirui1ORCID,Huang Shucai1,Wei Daozhi1

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

Abstract

In this paper, we consider the problem of motion intention recognition for cluster targets with splitting behaviour and lack of motion prior information. This is a challenge to the classical Bayesian inference based intention recognition algorithms because they rely heavily on a priori knowledge. In order to solve these problems, a joint algorithm of deep echo state network optimized by adaptive genetic algorithm (AGADESN) and DBSCAN clustering algorithm is proposed in this paper. We use improved Olfati-Saber model with direction noise to generate cluster motion and use the cluster motion data to drive AGADESN algorithm to predict cluster destination, which achieves higher destination prediction accuracy than DESN algorithm. We innovatively design the motion similarity distance (MSD) and take the destination prediction output as one of the distance inputs, alleviating the lack of differentiation among different cluster targets caused by only relying on speed and position distance at the early stage of cluster motion. Based on the MSD, DBSCAN clustering algorithm is used to identify clusters in the field of view to determine whether splitting behaviour occurs. Simulation results demonstrate the effectiveness of the proposed algorithm in cluster target motion intention recognition and its superiority over DESN algorithm and DBSCAN algorithm only based on speed and position distance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3