Film and Video Quality Optimization Using Attention Mechanism-Embedded Lightweight Neural Network Model

Author:

Ma Youwen1ORCID

Affiliation:

1. School of Media and Communication, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In filming, the collected video may be blurred due to camera shake and object movement, causing the target edge to be unclear or deforming the targets. In order to solve these problems and deeply optimize the quality of movie videos, this work proposes a video deblurring (VD) algorithm based on neural network (NN) model and attention mechanism (AM). Based on the scale recurrent network, Haar planar wavelet transform (WT) is introduced to preprocess the video image and to deblur the video image in the wavelet domain. Additionally, the spatial and channel AMs are fused into the overall network framework to improve the feature expression ability. Further, the residual inception spatial-channel attention (RISCA) mechanism is introduced to extract the multiscale feature information from video images. Meanwhile, skip spatial-channel attention (SSCA) accelerates the network training time to achieve a better VD effect. Finally, relevant experiments are designed, factoring in peak signal-to-noise ratio (PSNR) and structural similarity (SSI). The experimental findings corroborate that the proposed Haar and attention video deblurring (HAVD) outperforms multisize network Haar (MSNH) in PSNR and structural similarity (SSIM), improved by 0.10 dB and 0.005, respectively. Therefore, embedding the dual AMs can improve the model performance and optimize the video quality. This work provides technical support for solving the video distortion problems.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3