Edge Detection-Based Feature Extraction for the Systems of Activity Recognition

Author:

Siddiqi Muhammad Hameed1ORCID,Alrashdi Ibrahim1

Affiliation:

1. College of Computer and Information Sciences, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia

Abstract

Human activity recognition (HAR) is a fascinating and significant challenging task. Generally, the accuracy of HAR systems relies on the best features from the input frames. Mostly, the activity frames have the hostile noisy conditions that cannot be handled by most of the existing edge operators. In this paper, we have designed an adoptive feature extraction method based on edge detection for HAR systems. The proposed method calculates the direction of the edges under the presence of nonmaximum conquest. The benefits are in ease that depends upon the modest procedures, and the extension possibility is to determine other types of features. Normally, it is practical to extract extra low-level information in the form of features when determining the shapes and to get the appropriate information, the additional cultured shape detection procedure is utilized or discarded. Basically, this method enlarges the percentage of the product of the signal-to-noise ratio (SNR) and the highest isolation along with localization. During the processing of the frames, again some edges are demonstrated as a footstep function; the proposed approach might give better performance than other operators. The appropriate information is extracted to form feature vector, which further be fed to the classifier for activity recognition. We assess the performance of the proposed edge-based feature extraction method under the depth dataset having thirteen various kinds of actions in a comprehensive experimental setup.

Funder

Al Jouf University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference42 articles.

1. Stroke Telemedicine

2. Telemedicine: Extending Specialist Care to Rural Areas;CISCO,2021

3. Heart Failure Patients Monitored With Telemedicine: Patient Satisfaction, a Review of the Literature

4. Research and development of somatosensory virtual mouse based on Kinect;B. Chen;Journal of Software,2016

5. Human action recognition based on Kinect

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An attention mechanism and multi-feature fusion network for medical image segmentation;Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science;2023-06-28

2. Definition and Applications of SDN, NFV, Edge Computing and AI/ML Techniques;Journal of Machine and Computing;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3