Porous Carbons Derived from Desiliconized Rice Husk Char and Their Applications as an Adsorbent in Multivalent Ions Recycling for Spent Battery

Author:

Sun Yating1,Su Geng1ORCID,He Zhaocai1,Wei Yuan1,Hu Jinbo1ORCID,Liu Huaifei1ORCID,Liu Gonggang1ORCID

Affiliation:

1. Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Recycling of spent lithium-ion batteries (LIBs) has attracted increasing attentions recently on account of continuous growth demand for corresponding critical metals/materials and environmental requirement of solid waste disposal. In this work, rice husk as one of the most abundant renewable fuel materials in the world was used to prepare rice husk char (RC) and applied to recycle multivalent ions in waste water from hydrometallurgical technology dispose of spent LIBs. Rice husk char with specific surface area and abundant pores was obtained via pickling and desilication process (DPRC). The structural characterization of the obtained rice husk char and its adsorption capacity for multivalent ions in recycled batteries were studied. XRD, TEM, SEM, Raman, and BET were used for the characterization of the raw and the modified samples. The results show rice husk chars after desilication has more flourishing pore structure and larger pore size about 50–60 nm. Meanwhile, after desilication, the particle size of rice husk char decreased to 31.392 μm, and the specific surface area is about 402.10 m2/g. Its nitrogen adsorption desorption curve (BET) conforms to the type IV adsorption isotherm with H3 hysteresis ring, indicating that the prepared rice husk char is a mesoporous material. And the adsorption capacity of optimized DPRC for Ni, Co, and Mn ions is 7.00 mg/g, 4.84 mg/g, and 2.67 mg/g, respectively. It also demonstrated a good fit in the Freundlich model for DPRC-600°C, and a possible adsorption mechanism is proposed. The study indicates biochar materials have great potential as an adsorbent to recover multivalent ions from spent batteries.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3