Ten Hotspot MicroRNAs and Their Potential Targets of Chondrocytes Were Revealed in Osteoarthritis Based on Bibliometric Analysis

Author:

Hu Wei-Shang1ORCID,Zhang Qi12ORCID,Li Si-Hui1ORCID,Ai Shuang-Chun3ORCID,Wu Qiao-Feng145ORCID

Affiliation:

1. Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China

2. Chongqing Traditional Chinese Medicine Hospital, Chongqing, China

3. Mianyang Hospital of Traditional Chinese Medicine, Mianyang, Sichuan, China

4. Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China

5. Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China

Abstract

Background. Osteoarthritis (OA) is one of the most common joint disorders and debilitating diseases. Current evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of OA and have great potential as new biomarkers and therapeutic targets. We aimed to analyze the trends and research status on miRNAs in OA and further demonstrate the hotspot miRNAs in OA via CiteSpace and VOSviewer. Methods. Publications regarding miRNAs and OA were extracted from the Web of Science (WOS) database on October 30, 2021. We assessed the number of publications, institutions, countries, authors, journals, cited references, and keywords with the help of the software tools CiteSpace and VOSviewer. Results. A total of 1109 articles were included. Research related to miRNAs and OA began to appear in 2008, and the overall trend is increasing. Chinese institutions have a leading advantage in the number of publications but lack high-quality and high-cited research and are laggard in co-cited literature. Ten miRNAs including miR-140, miR-146, miR-34, miR-181, miR-27, miR-9, miR-29, miR-21, miR-26, and miR-155 and chondrocytes were revealed as the most obvious miRNAs and a potential target for OA based on bibliometric analysis. More focus will be placed on a comprehensive study on chondrocytes regulated by miRNAs, which may accelerate possible diagnostic biomarkers and diagnostic biomarkers of OA in the future.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3