Analysis and Design of the Accessory Structure under the Large Deformation of a Flexible Roof

Author:

Zhang Shi-chang12ORCID,Xu Xiao-ming2,Gao Feng2,Huang Peng3,Luo Bin1ORCID,Shi Wei-zhou2,Fang Qing2

Affiliation:

1. Southeast University, Nanjing 210096, China

2. Arcplus Institute of Shanghai Architectural Design and Research, Shanghai 200041, China

3. Tongji University, Shanghai 200082, China

Abstract

An increasing number of large-span space structures use flexible roofs to achieve a light and splendid architectural effect. When a flexible structural system such as a cable net is applied in a large-span stadium, the roof will deform significantly under the self-weight and wind load. Accessory structures of the roof such as catwalks, radial drainage pipes, circular drainage channels, and radial cable trenches need to cooperate with the large deformation of the roof to prevent damage caused by the large deformation of the roof. To thoroughly unveil the analysis and design method of an accessory structure, this paper first carried out the wind tunnel test to determine the wind load of the structure. Then, the gust response factors of each roof area and the dynamic amplification coefficient of the accessory structure considering the roof vibration were determined. Next, circular and radial catwalks were designed based on static analysis. A sliding joint was set in the accessory structure to adapt to the large deformation of the roof. Finally, a time history analysis of the catwalk was carried out to obtain the maximum deformation value of the sliding joint for the safety of the structure. The results demonstrate that the maximum deformation is less than the value given by the design and meets the specification.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3