Analysis of the Damage Mechanism Related to CO2 Laser Cochleostomy on Guinea Pig Cochlea

Author:

Liu Xiang123,Qian Xiao-qing123,Ma Rui234,Chi Fang-Lu123ORCID,Ren Dong-Dong123ORCID

Affiliation:

1. Department of Otology & Skull Base Surgery, EYE & ENT Hospital of Fudan University, Shanghai 200031, China

2. Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China

3. Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai 200031, China

4. Department of Research Center, EYE & ENT Hospital of Fudan University, Shanghai 200031, China

Abstract

Different types of lasers have been used in inner ear surgery. Therefore, it is of the utmost importance to avoid damage to the inner ear (e.g., hyperthermia and acoustic effects) caused by the use of such lasers. The aim of this study was to use a high powered fibre-enabled CO2 laser (10 W, 606 J/cm2) to perform cochleostomies on guinea pig cochlea and to investigate the possible laser-induced damage mechanisms. The temperature changes in the round window membrane, auditory evoked brainstem response, and morphological of the hair cells were measured and recorded before and after laser application. All of the outcomes differed in comparison with the control group. A rise in temperature and subsequent increased hearing loss were observed in animals that underwent surgery with a 10 W CO2 laser. These findings correlated with increased injury to the cochlear ultrastructure and a higher positive expression of E-cadherin and β-catenin in the damaged organ of Corti. We assume that enhanced cell-cell adhesion and the activated β-catenin-related canonical Wnt-signalling pathway may play a role in the protection of the cochlea to prevent further damage.

Funder

Key Project of Chinese National Programs

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3