Mechanical-Chemical-Mineralogical Controls on Permeability Evolution of Shale Fractures

Author:

Jia Yunzhong12,Lu Yiyu1ORCID,Tang Jiren1ORCID,Fang Yi23,Xia Binwei1,Ge Zhaolong1

Affiliation:

1. State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

2. Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, The Pennsylvania State University, University Park, PA 16802, USA

3. Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA

Abstract

We report experimental observations of permeation of CO2-rich aqueous fluids of varied acidic potential (pH) on three different shales to investigate mechanical, chemical, and mineralogical effects on fracture permeability evolution. Surface profilometry and SEM-EDS (scanning electron microscopy with energy-dispersive X-ray spectroscopy) methods are employed to quantify the evolution in both roughness on and chemical constituents within the fracture surface. Results indicate that, after 12 hours of fluid flow, fracture effective hydraulic apertures evolve distinctly under different combinations of shale mineralogy, effective stress, and fluid acidity. The evolution of roughness and transformation of chemical elements on the fracture surface are in accordance with the evolution of permeability. The experimental observations imply that (1) CO2-rich aqueous fluids have significant impact on the evolution of fracture permeability and may influence (and increase) shale gas production; (2) shale mineralogy, especially calcite mineral, decides the chemical reaction and permeability increasing when CO2-rich aqueous fluids flow through fractures by free-face dissolution effect; (3) clay mineral swelling reduces fracture aperture and additively calcite pressure solution removes the bridging asperities, which are the main reasons for fracture permeability decrease; (4) competition roles among clay mineral swelling, mineral pressure solution, and free-face dissolution determine how fracture permeability changes. Furthermore, a multiple parameter model is built to analyze effective hydraulic aperture evolution in considering above three mechanisms, which provide a reference to forecast fracture permeability evolution in shale formations.

Funder

Program for Changjiang Scholars and Innovative Research Team in Chongqing University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3