Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications

Author:

Salih Ajaj Chiayee1ORCID,Sadiq Diyar1ORCID

Affiliation:

1. Centre for Material Science and Nanotechnology (CMSN), Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Zakho, Iraq

Abstract

Cesium lead bromide (CsPbBr3) nanocrystals exhibit remarkable optoelectronic properties and exceptional stability. As a result, they have garnered significant interest for their potential applications in various fields, including solar cells, light-emitting devices, photodetectors, and lasers. Despite its resistance to moisture, oxygen, and heat compared to other perovskite materials, CsPbBr3 still faces challenges maintaining its structural and optical stability over extended periods. This study proposes a robust solution to enhance and improve simultaneously the photoluminescence intensity and stability of CsPbBr3 nanocrystals. The solution involves doping the perovskite precursor with green-synthesized carbon quantum dots (CQDs) and tri-n-octyl phosphine (TOP). The results indicate that the photoluminescence intensity of the perovskite nanocrystals (NCs) is sensitive to varying CQD ratios. A high photoluminescence intensity enhancement of 45% was achieved at the optimal CQDs ratio. The synthesized perovskite NCs/CQDs also demonstrated improved stability by adding TOP into the mixture. After storage in the air for 45 days, the mixed perovskite NCs maintained their performance, which was almost unchanged. Solar cell devices based on the modified perovskite NCs showed a power conversion of 7.74%. The devices also demonstrated a significant open-circuit voltage (VOC), with the most successful device achieving a VOC of 1.193 V, an Isc of 10.5748 mA cm−2, and a fill factor (FF) of 61%. This study introduces a cost-effective method for producing high-quality all-inorganic optoelectronic devices with enhanced performance and stability.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3