Mathematical Modeling of COVID‐19 Disease Dynamics With Contact Tracing: A Case Study in Ethiopia

Author:

Zerefe Shimelis Bekele,Ayele Tigabu KasieORCID,Tilahun Surafel Luleseged

Abstract

In this paper, we developed a mathematical model for the dynamics of coronavirus disease (COVID‐19) transmission. The model embraces the notion of contact tracing and contaminated surfaces which are vital for disease control and contribute to disease transmission, respectively. We analyzed the model properties such as the positivity of the solution, invariant region, existence, and stability nature of equilibria. Besides, we computed the basic reproduction number R0. The local stability and the global stability of disease‐free equilibrium (DFE) points are proved by using the Routh–Hurwitz criteria and the Castillo‐Chavez and Song approach, respectively. LaSalle’s invariant principle is applied to prove the stability of an endemic equilibrium (EE) point. The possibility of bifurcation is discussed using the center manifold theory. We used real data on the spread and control of COVID‐19 disease in Ethiopia. Based on the data reported, we estimated the values of the parameters using the least squares method together with the fmin function in the MATLAB optimization toolbox. The sensitivity analysis of the model is explored numerically to illustrate the impact of the parameters on disease transmission. The study addressed that contact tracing is especially important because COVID‐19 often has asymptomatic carriers, and there are many asymptomatic individuals unaware in Ethiopia. The new infections would decrease in the communities by detecting and isolating COVID‐19 cases before they could spread the virus to others. Moreover, the study endorsed that the contaminated surface has contributed to disease transmission. The sensitivity analysis shows that if the rate of disinfected contaminated objects (ϕ) rises, then the transmission of the disease is reduced. Consequently, this study will aid in the fight against COVID‐19 policymakers and NGOs. It can also be used as a policy input for different countries under this crisis. Because of the mathematical modeling of this global pandemic, there is another point of view rather than public health research outputs. Additionally, with the concept of contact tracing and contaminated surfaces incorporated into the model, the result provides insight for disease prevention.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3