Ataxin-10 Inhibits TNF-α-Induced Endothelial Inflammation via Suppressing Interferon Regulatory Factor-1

Author:

Li Yong1ORCID,Zhang Qi2,Li Na3,Ding Liting2,Yi Jinping4,Xiao Yue5ORCID,Chen Shibiao1,Huang Xuan2ORCID

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China

2. The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China

3. School of Future Technology, Nanchang University, Nanchang, China

4. Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China

5. First School of Clinical Medicine, Nanchang University, Nanchang, China

Abstract

Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.

Funder

Nanchang University

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3