Petrophysical Regression regarding Porosity, Permeability, and Water Saturation Driven by Logging-Based Ensemble and Transfer Learnings: A Case Study of Sandy-Mud Reservoirs

Author:

Zhang Shenghan1,Gu Yufeng2ORCID,Gao Yinshan3,Wang Xinxing3,Zhang Daoyong2,Zhou Liming2

Affiliation:

1. Sinopec Geophysical Research Institute, Nanjing Jiangsu 211103, China

2. Strategic Research Center of Oil and Gas Resources, Ministry of Natural Resources, Beijing 100034, China

3. Oil Production Plant 5, PetroChina Changqing Oilfield Company, Xi’an Shaanxi 710200, China

Abstract

From a general review, most petrophysical models applied for the conventional logging interpretation imply that porosity, permeability, or water saturation mathematically have a linear or nonlinear relationship with well logs, and then arguing the prediction of these three parameters actually is accessible under a regression of logging sequences. Based on this knowledge, ensemble learning technique, partially developed for fitting problems, can be regarded as a solution. Light gradient boosting machine (LightGBM) is proved as one representative of the state-of-the-art ensemble learning, thus adopted as a potential solver to predict three target reservoir characters. To guarantee the predicting quality of LightGBM, continuous restricted Boltzmann machine (CRBM) and Bayesian optimization (Bayes) are introduced as assistants to enhance the significance of input logs and the setting of employed hyperparameters. Thereby, a new hybrid predictor, named CRBM-Bayes-LightGBM, is proposed for the prediction task. To validate the working performance of the proposed predictor, the basic data derived from the member of Chang 8, Jiyuan Oilfield, Ordos Basin, Northern China, is collected to launch the corresponding experiments. Additionally, to highlight the validating effect, three sophisticated predictors, including k-nearest neighbors (KNN), support vector regression (SVR), and random forest (RF), are introduced as competitors to implement a contrast. Since ensemble learning models universally will cause an underfitting issue when dealing with a small-volumetric dataset, transfer learning in this circumstance will be employed as an aided technique for the core predictor to achieve a satisfactory prediction. Then, three experiments are purposefully designed for four validated predictors, and given a comprehensive analysis of the gained experimented results, two critical points are concluded: (1) compared to three competitors, LightGBM-cored predictor has capability to produce more reliable predicted results, and the reliability can be further improved under a usage of more learning samples; (2) transfer learning is really functional in completing a satisfactory prediction for a small-volumetric dataset and furthermore has access to perform better when serving for the proposed predictor. Consequently, CRBM-Bayes-LightGBM combined with transfer learning is solidly demonstrated by a stronger capability and an expected robustness on the prediction of porosity, permeability, and water saturation, which then clarify that the proposed predictor can be viewed as a preferential selection when geologists, geophysicists, or petrophysicists need to finalize a characterization of sandy-mud reservoirs.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference59 articles.

1. Log Analysis Part I: Porosity

2. An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoirs;A. Timur;The Log Analyst,1968

3. Electrical conductivities in oil-bearing shaly sands;M. H. Waxman;SPE Reprint Series,2003

4. Introduction to petrophysics of reservoir rocks;G. E. Archie;AAPG Bulletin,1950

5. Fluid flow through granular beds;P. C. Carman;Transactions Institution of Chemical Engineers,1937

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3