A Dueling Deep Recurrent Q -Network Framework for Dynamic Multichannel Access in Heterogeneous Wireless Networks

Author:

Chen Haitao1ORCID,Zhao Haitao1ORCID,Zhou Li1ORCID,Zhang Jiao1ORCID,Liu Yan1,Pan Xiaoqian1,Liu Xingguang1ORCID,Wei Jibo1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China

Abstract

This paper investigates a deep reinforcement learning algorithm based on dueling deep recurrent Q -network (Dueling DRQN) for dynamic multichannel access in heterogeneous wireless networks. Specifically, we consider the scenario that multiple heterogeneous users with different MAC protocols share multiple independent channels. The goal of the intelligent node is to learn a channel access strategy that achieves high throughput by making full use of the underutilized channels. Two key challenges for the intelligent node are (i) there is no prior knowledge of spectrum environment or the other nodes’ behaviors; (ii) the spectrum environment is partially observable, and the spectrum states have complex temporal dynamics. In order to overcome the aforementioned challenges, we first embed the long short-term memory layer (LSTM) into the deep Q -network (DQN) to aggregate historical observations and capture the underlying temporal feature in the heterogeneous networks. And second, we employ the dueling architecture to overcome the observability problem of dynamic environment in neural networks. Simulation results show that our approach can learn the optimal access policy in various heterogeneous networks and outperforms the state-of-the-art policies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stock Price Forecast Based on Dueling Deep Recurrent Q-network;2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3