Identification of Four Metabolic Subtypes of Glioma Based on Glycolysis-Cholesterol Synthesis Genes

Author:

Zhang Jinsen1234ORCID,Xiao Xing1234ORCID,Guo Qinglong1234ORCID,Wei Zixuan5ORCID,Hua Wei1234ORCID

Affiliation:

1. Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China

2. Neurosurgical Institute of Fudan University, Shanghai 200040, China

3. Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China

4. Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China

5. Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Abstract

Based on alterations in gene expression associated with the production of glycolysis and cholesterol, this research classified glioma into prognostic metabolic subgroups. In this study, data from the CGGA325 and The Cancer Genome Atlas (TCGA) datasets were utilized to extract single nucleotide variants (SNVs), RNA-seq expression data, copy number variation data, short insertions and deletions (InDel) mutation data, and clinical follow-up information from glioma patients. Glioma metabolic subtypes were classified using the ConsensusClusterPlus algorithm. This study determined four metabolic subgroups (glycolytic, cholesterogenic, quiescent, and mixed). Cholesterogenic patients had a higher survival chance. Genome-wide investigation revealed that inappropriate amplification of MYC and TERT was associated with improper cholesterol anabolic metabolism. In glioma metabolic subtypes, the mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) presented deletion and amplification, respectively. Differentially upregulated genes in the glycolysis group were related to pathways, including IL-17, HIF-1, and TNF signaling pathways and carbon metabolism. Downregulated genes in the glycolysis group were enriched in terpenoid backbone biosynthesis, nitrogen metabolism, butanoate metabolism, and fatty acid metabolism pathway. Cox analysis of univariate and multivariate survival showed that risks of glycolysis subtypes were significantly higher than other subtypes. Those results were validated in the CGGA325 dataset. The current findings greatly contribute to a comprehensive understanding of glioma and personalized treatment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3