Affiliation:
1. College of IoT Engineering, Hohai University, Changzhou 213022, China
Abstract
An adaptive fractional-order nonsingular terminal sliding mode controller for a microgyroscope is presented with uncertainties and external disturbances using a fuzzy neural network compensator based on a backstepping technique. First, the dynamic of the microgyroscope is transformed into an analogical cascade system to guarantee the application of a backstepping design. Then, a fractional-order nonsingular terminal sliding mode surface is designed which provides an additional degree of freedom, higher precision, and finite convergence without a singularity problem. The proposed control scheme requires no prior knowledge of the unknown dynamics of the microgyroscope system since the fuzzy neural network is utilized to approximate the upper bound of the lumped uncertainties and adaptive algorithms are derived to allow online adjustment of the unknown system parameters. The chattering phenomenon can be reduced simultaneously by the fuzzy neural network compensator. The stability and finite time convergence of the system can be established by the Lyapunov stability theorem. Finally, simulation results verify the effectiveness of the proposed controller and the comparison of root mean square error between different fractional orders and integer order is given to signify the high precision tracking performance of the proposed control scheme.
Funder
Fundamental Research Funds for the Central Universities
Subject
Multidisciplinary,General Computer Science
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献