Population growth and environment as a self-organizing system

Author:

Allen Peter M.1

Affiliation:

1. International Ecotechnology Research Centre, Cranfield University, Bedford MK43 OAL, UK

Abstract

Over recent years a new understanding of complex systems, and their dynamics and evolution has emerged, and these have been shown to provide a new basis for models of the changing patterns of population and economic activities that shape the landscape. In this paper we make clear the necessarily partial description that any particular model must provide, and show the importance of a multidisciplinary, holistic understanding, linking any particular model to the co-evolution of its environment. In addition, we show how evolutionary processes link the microscopic level of molecules through successive scales of structure and organization ultimately to the biosphere itself, to issues of climatic change, of biomes at the continental scale and atmospheric and oceanic circulation patterns. Some very recent results will be shown which demonstrate that the world climate has already been modified considerably by human activities, particularly agriculture, underlining the vital need to understand better the on-going interaction between human activities and the biosphere.Models will be described which can link the co-evolution of these multiple scales of organization and change, and which can be used to help to explore the consequences of different possible policies, and in this way to provide information concerning the agendas, risks and issues to be addressed in the 21st Century, as well as pointing to possible policies that may be appropriate. Already models exist which can explore the dynamics of urban development, the patterns of land-use, and the possible environmental impacts of these in the context of a still fast growing population. Such models provide a framework within which questions such as those concerning energy consumption, transportation, social conditions can be explored and agendas and priorities set. Clearly, advances in information and telecommunications technologies present great opportunities for increasing accessibilities without necessarily increasing mobility or energy consumption, and models which can help in assessing their potential impact on development and in their successful implementation are of great value.Complex system models can also be of great use in exploring the long term implications of the present, increasing, reliance on market systems and economic signals in the allocation of resources and patterns of investment. In particular, complex systems models can explore the effects of the precise regulatory framework within which a market operates, and as a result may be able to suggest ways in which long term, sustainable development can be achieved despite the present short term horizons of the players in market dynamics. In addition, of course, they can illuminate and inform actors about the longer term, and perhaps actually lengthen the time horizon considered by market participants. In short, the insights arising from complex systems models could, hopefully, play a role in expanding the understanding, the conceptual framework and the ethical basis of decision making in the 21st Century.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mathematical Model of Segregation Patterns in Residential Neighbourhoods;Environment and Planning A: Economy and Space;2004-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3