Affiliation:
1. Petroleum Engineering College, Yangtze University, Wuhan 430100, China
2. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China
Abstract
The surface hydrophilicity of thermoplastic rubber (TPR) is poor, and the effect of using it directly in oil well cement is not good. TPR was modified by different silane coupling agents, and the hydrophilicity of the modified TPR was studied by Fourier-transform infrared (FT-IR) spectroscopy and dispersion stability photography. The application effect of modified TPR in oil well cement slurry was also evaluated. The fracture surface morphology of TPR cement stone was observed by macrophotography and scanning electron microscopy (SEM). The results demonstrated that the hydrophilicity of TPR particles was improved after modification with silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH570), and its application effect in cement slurry was excellent. Compared with the pure cement paste, the compressive strength of the cement paste with addition of TPR modified by KH570 was reduced, but the flexural strength and impact strength of the cement paste were effectively enhanced. Moreover, the modified TPR greatly improved the deformation capacity and decreased the elastic modulus of the cement paste. The modified TPR particles formed a plastic polymer network structure in the cement stone and penetrated the cement hydration products, filling in the cement paste to form a flexible structural center. Thus, it improved the mechanical properties and reduced the brittleness of cement paste.
Subject
General Engineering,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献