A Study on Integrity Testing for Platform-Pile Systems considering Wave Propagation

Author:

Fu Minghui1ORCID,Lin Meihong12ORCID

Affiliation:

1. Department of Applied Mechanics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

2. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510000, China

Abstract

Platform-pile systems are typically used in bridge foundations and seaport structures. These systems are difficult to analyze using a conventional low-strain integrity test (LST) due to periodic oscillations. A staggered-grid finite-difference (SFD) method is proposed for a platform-pile system in soil and verified with ABAQUS and measured data. Different impact locations on the top surface of the platform and the lateral surface of the pile are analyzed, and parallel velocities are obtained at different locations. Choosing an appropriate impact location reduces the influence of the periodic oscillation signal; the impact locations at the center of symmetry are the best choices. At the same impact energy, the impact location should not be outside the cross section of the pile when the impact occurs on the top surface of the platform to achieve a meaningful damage signal. When the impact locations are on the lateral surface of the pile, the interferences are relatively small, and the damage vibration signal can be detected. The material and size of the hammer determine the impact duration and should be chosen to reduce the high-frequency influences and obtain reasonable data for analysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Critical Analysis of Existing Intelligent Analytical Techniques for Pile Integrity Test;2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE);2022-11-25

2. Integrity Testing of a Platform-Pile System Using a Sensor Array and Wavenumber Domain Analysis;Advances in Civil Engineering;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3