Analysis of Big Data Behavior in Sports Track and Field Based on Machine Learning Model

Author:

Lin Qiuping1,Dong Xiaoxue2,Li Minglun3ORCID

Affiliation:

1. Department of Physical Education, Weifang Medical University, Weifang 261053, China

2. Physical Education Center, Weifang University of Science and Technology, Shouguang 262700, China

3. Department of Science and Humanities, Shandong College of Economics and Business, Weifang 261011, China

Abstract

At present, machine learning is more efficient and accurate for the efficiency of operation logic after four stages of reform. In order to improve the participation rate of the whole people in track and field sports and get a better level and ranking in track and field competitions, the ATI model under the machine model is used to deeply analyze the behavior of track and field sports in order to get more accurate data. There are a series of problems in the process of correlation analysis, such as the loss caused by the analysis process, the error in the analysis process, and the lack of understanding of track- and field-related data. In order to solve this series of problems, this study optimizes the behavior analysis through related experiments. The experiment proves the correlation between learning rate and loss. When the learning rate is 0.1, the loss caused by behavior analysis is lower. For the 23rd–28th session, the number of gold medals and the number of medals won in track and field were analyzed. By comparing the ATI model with the ATT model, ATT-Net model, and WAT model, it is concluded that the ATI model has a lower error rate for behavior analysis under big data. The coverage rate of behavior analysis data is wider. Therefore, in order to make track and field behavior analysis more accurate and stable under big data, the ATI model under machine learning should be preferred for data collection, collation, analysis, and summary. Through the ATI model to analyze the related behavior of track and field under big data, there are the following advantages: when the learning speed is 0.1, the loss value in the analysis process is reduced; the number of neurons is increased, and the dropout rate is reduced to reduce NPMSE value; and the error loss rate of behavior analysis is reduced, and the analysis coverage rate is increased.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3