Research on the Prediction of Aircraft Landing Distance

Author:

Zhao Ningning1ORCID,Zhang Junchao1

Affiliation:

1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China

Abstract

To prevent aircraft from running off the runway during landing, this paper uses a BP neural network model to predict the aircraft landing distance. In this study, based on the five main influencing factors of airport height, aircraft landing quality, airport runway slope, wind, and ambient temperature, the B737-800 was selected as the reference aircraft and the relevant operational data were collected using Boeing’s LAND software for the study. In addition, this study uses LM (Levenberg–Marquardt) algorithm and GA (genetic algorithm) to optimize the training process, accelerate the computation speed, and improve the shortage of local optimization of BP (back propagation) neural network model and then construct the GA-LM-BP neural network optimization model. Finally, it makes the BP neural network have the ability of global search for optimal solutions. The results show that the predicted landing data are in good agreement with the measured landing data. The maximum absolute error is within 6.66 m and the maximum relative error is within 0.038%.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference18 articles.

1. Research on landing distance prediction for civil aircraft;Ry Wen;Chinese Journal of Safety Science,2017

2. Estimation of wet/contaminated runway landing distance based on multiple linear regression;R. P. Gu;Journal of Civel Aviation University of China,2014

3. Calculation and analysis of plane’s landing slipping length with full thrust in plateau air field Journal of Air Force Engineering University;L C. Cai;Nature Science Edition,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3