Automated Identification of Dementia Using FDG-PET Imaging

Author:

Xia Yong123ORCID,Lu Shen2ORCID,Wen Lingfeng23,Eberl Stefan23ORCID,Fulham Michael234,Feng David Dagan25

Affiliation:

1. Shaanxi Provincial Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

2. Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia

3. Department of Molecular Imaging, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia

4. Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia

5. Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

Parametric FDG-PET images offer the potential for automated identification of the different dementia syndromes. However, various existing image features and classifiers have their limitations in characterizing and differentiating the patterns of this disease. We reported a hybrid feature extraction, selection, and classification approach, namely, the GA-MKL algorithm, for separating patients with suspected Alzheimer’s disease and frontotemporal dementia from normal controls. In this approach, we extracted three groups of features to describe the average level, spatial variation, and asymmetry of glucose metabolic rates in 116 cortical volumes. An optimal combination of features, that is, capable of classifying dementia cases was identified by a genetic algorithm- (GA-) based method. The condition of each FDG-PET study was predicted by applying the selected features to a multikernel learning (MKL) machine, in which the weighting parameter of each kernel function can be automatically estimated. We compared our approach to two state-of-the-art dementia identification algorithms on a set of 129 clinical cases and improved the performance in separating the dementia types, achieving accuracy of 94.62%. There is a very good agreement between the proposed automated technique and the diagnosis made by clinicians.

Funder

Australian Research Council

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3