Analysis of English Cultural Teaching Model Based on Machine Learning

Author:

Yang Qianqian1ORCID

Affiliation:

1. School of Foreign Languages and Cultures, Beijing Wuzi University, Beijing 101149, China

Abstract

According to the world population, nearly five billion people use mobile phones in their daily lives, and this has increased by 20% in the last twelve months compared to the previous report. An average survey conducted by researchers to find the amount of data consumed in a month by every mobile phone in the world has finally resulted in 45 exabytes of data being collected from a single user within a month. In today’s world, data consumption and data analytics are being considered as one of the most important necessities for e-commerce companies. With the help of such collected data from a person, it is possible to predict the future signature or activity of the person. If 45 terabytes of data can be stored for a single user, determining the average calculation and amount of data to be collected for five billion users appears to be much more difficult. More than the human working concept, it looks like it would be difficult for a traditional computer system to handle this amount of data. To study and understand a concept from machine learning and artificial intelligence requires quite a collection of data to predict according to a person’s activity. This article explains the roles of faculty and students, as well as the requirements for academic evaluation. Even before the pandemic, most people did not have any idea about the online teaching model. It is only after the disability of conducting direct (offline) classes that people are forced to get into the online world of teaching. Nearly 60% of countries are trying to convert their education systems to such online models, which improve communication between students and teachers and also enable different schemes for students. Big data can be considered as one of the technological revolutions in information technology companies that became popular after the crisis of cloud computing. A support vector machine (SVM) is proposed for analyzing English culture teaching and is compared with the traditional fuzzy logic. The results show the proposed model achieves an accuracy of 98%, which is 5% higher than the existing algorithm.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference24 articles.

1. Construction of Multimedia Teaching Platform for Community Nursing Based on Teaching Resource Library Technology

2. The Effects of YouTube in Multimedia Instruction for Vocabulary Learning: Perceptions of EFL Students and Teachers

3. Visual Learning: A Learner Centered Approach to Enhance English Language Teaching

4. Analysis of music teaching mode innovation based on intelligent classroom and multimedia system;C. Jin;Revista de la Facultad de Ingenieria,2017

5. Reluctance to sanction Kiswahili instructional medium in post-primary education: how do the learners and their instructors cope with or resist the English medium policy?;T. Mpemba;Phi delta Kappan,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3