Deep Neural Embedding for Software Vulnerability Discovery: Comparison and Optimization

Author:

Yuan Xue1,Lin Guanjun2,Tai Yonghang1ORCID,Zhang Jun1ORCID

Affiliation:

1. School of Physics and Electronic Information, Yunnan Normal University, Kunming 650000, China

2. School of Information Engineering, Sanming University, Sanming, Fujian 365004, China

Abstract

Due to multitudinous vulnerabilities in sophisticated software programs, the detection performance of existing approaches requires further improvement. Multiple vulnerability detection approaches have been proposed to aid code inspection. Among them, there is a line of approaches that apply deep learning (DL) techniques and achieve promising results. This paper attempts to utilize CodeBERT which is a deep contextualized model as an embedding solution to facilitate the detection of vulnerabilities in C open-source projects. The application of CodeBERT for code analysis allows the rich and latent patterns within software code to be revealed, having the potential to facilitate various downstream tasks such as the detection of software vulnerability. CodeBERT inherits the architecture of BERT, providing a stacked encoder of transformer in a bidirectional structure. This facilitates the learning of vulnerable code patterns which requires long-range dependency analysis. Additionally, the multihead attention mechanism of transformer enables multiple key variables of a data flow to be focused, which is crucial for analyzing and tracing potentially vulnerable data flaws, eventually, resulting in optimized detection performance. To evaluate the effectiveness of the proposed CodeBERT-based embedding solution, four mainstream-embedding methods are compared for generating software code embeddings, including Word2Vec, GloVe, and FastText. Experimental results show that CodeBERT-based embedding outperforms other embedding models on the downstream vulnerability detection tasks. To further boost performance, we proposed to include synthetic vulnerable functions and perform synthetic and real-world data fine tuning to facilitate the model learning of C-related vulnerable code patterns. Meanwhile, we explored the suitable configuration of CodeBERT. The evaluation results show that the model with new parameters outperform some state-of-the-art detection methods in our dataset.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3