Experimental Study on Water Reduction Modification and Efficient Utilization of Coal-Based Solid Waste Slurry

Author:

Ma Chengwei1ORCID,Xuan Dayang1ORCID,Xu Jialin12,Li Jian1

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

Unreasonable treatment of coal-based solid waste and coal mining damage are important factors that cause negative environmental effects. Overburden isolated grouting, a green mining method, can realize solid waste emission reduction and coal mine impairment mining. Fluidity and economy are important indices to measure the performance of slurry. Although fly ash slurry with a high water‒cement ratio has good fluidity, it is wasteful in terms of water resources, the filling efficiency is low, and tectonic complexity affects its safe production; similarly, gangue powder slurry has good fluidity but comes with a high cost and complex implementation. Here, the relationship between fluidity and water‒cement ratio in fly ash and gangue powder slurries was studied experimentally; the effects of particle size and dosage of gangue powder and polycarboxylic acid water reducer on the water consumption of fly ash slurry preparation were analyzed. Our results show that the fluidities of fly ash and gangue powder slurries increased with increasing water‒cement ratios under laboratory conditions; the fluidity of gangue powder slurry was much higher than that of fly ash slurry under the same water‒cement ratio and particle size conditions. When 50% gangue powder with particle sizes of 40‒45, 50‒55, 60‒70, and 70‒80 mesh was added to make composite slurries, the water reduction rate of fly ash slurry was 20%, 31%, 34%, and 36%, respectively. Adding a 1% polycarboxylic acid water reducer on top of the effect of the gangue powder gave comprehensive water reduction rates of 29%, 44%, 49%, and 53%, respectively. The critical particle size of gangue powder in the fly ash slurry to achieve stable suspension was 0.27‒0.33 mm; when this was exceeded, the precipitation speed accelerated, and the water reduction rate reduced. A flocculation structure exists in fly ash and composite slurries, and the water reducer can breakdown this flocculation structure, increase the proportion of free water, and improve the fluidity of the resultant slurry. This high-efficiency utilization method of coal-based solid waste modified by water reduction can improve the utilization efficiency of coal-based solid waste and improve the effect and safety of grout-filling technology.

Funder

Jiangsu Postgraduate Scientific Research Innovation Program Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3