Cracking Characteristics and Mechanism of Internal Components of Large-Span Shield Tunnel

Author:

Dong Fei1,Li Ao1ORCID,Huang Jun1,Zhao Guang1,Chen Ningwei2

Affiliation:

1. JSTI Group, Nanjing 210029, China

2. Nanjing Metro Operation Co., Ltd., Nanjing 210046, China

Abstract

With the ever-increasing number of large-span shield tunneling projects and the extended operational time, their distinctive internal component issues are becoming more pronounced and exhibiting unique characteristics. In order to reveal the cracking mechanism of concrete on the top of the middle partition wall, based on a large-span shield tunnel section of Nanjing Metro, the crack mode, distribution characteristics, and cracking process of concrete inside tunnel structure were studied by combined field investigation and extended finite element analysis. The results showed that: (1) there were 96 cracks of concrete on the top of the middle partition wall in the interval. Based on the propagation path, number, and shape of cracks, they could be divided into type I, II, III, Y, and Z, with type-Y and type-Z being subtypes of type-I. (2) The crack started at the opposite side of horizontal differential displacement of the flue plate. The development curves of the length and end width of type-I and type-II cracks showed the significant characteristics of three stages. The relationship between crack end width and length was nonlinear, showing that 250 and 225 mm, respectively, were the critical crack lengths growing with the rapid growth of the end width of type-I and type-II cracks. (3) In type-II cracks, the propagation curves of two cracks under the same working condition were consistent, and the spacing of plate joints greatly influenced the length and slope of each stage of the curve. For type-III cracks, the first crack propagation process was basically consistent with type-I and type-II cracks, and the propagation of the other two cracks had obvious brittle characteristics.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3