Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players

Author:

Liang Shuang1,Li Yang2ORCID

Affiliation:

1. Mechinery and Electrical Department, Jiangxi Engineering Vocational College, Jiangxi Open University, Nanchang, Jiangxi330046, China

2. College of Physical Education, Yichun University, Yichun, Jiangxi 336000, China

Abstract

Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K-means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real-time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3