Design of Optimal Passive Tuned Mass Damper with Static Output Feedback and Updating Iterative Procedure

Author:

Lai Yong-An1ORCID,Chang Chi-Hung1ORCID,Yang Cho-Yen2ORCID,Chang Chia-Ming3ORCID

Affiliation:

1. Department of Civil Engineering, National Central University, Taoyuan 320317, Taiwan

2. National Center for Research on Earthquake Engineering, Taipei 106219, Taiwan

3. Department of Civil Engineering, National Taiwan University, Taipei 106319, Taiwan

Abstract

In this study, the optimal design issue of a passive tuned mass damper (TMD) was transformed into the nonsparse control gain matrix optimization problem, and a general passive TMD optimization design method to minimize structural mean square responses or impulse response is therefore proposed. The proposed optimization procedure combines the static output feedback (also known as direct output feedback) algorithm and the updating iterative procedure. The proposed method can be applied to variant design scenario, whether the main structure is single-degree-of-freedom (SDOF) or multidegree-of-freedom (MDOF) structures, undamped or damped structures, subjected to wind disturbances or earthquake excitations. In addition, the proposed method is capable to consider the excitation shaping filter, so the design results are more suitable for practical application. The design procedure of the proposed method is presented, and all the required weighting matrices are introduced and derived in detail. Firstly, the SDOF structures are used as the main structure to demonstrate the correctness of the proposed method. The numerical simulation results verify that the obtained optimal design parameters of TMD were found identical to some cases which contain the analytic solution. The accuracy and feasibility of the proposed design method are confirmed. Finally, a passive TMD is optimally designed for a 5-story MDOF structure subjected to Kanai–Tajimi spectrum comparable earthquakes and a 60-story high-rise MDOF structure subjected to Davenport spectrum comparable wind loads for demonstration.

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3