Engineered Decellularized Tendon Matrix Putty Preserves Native Tendon Bioactivity to Promote Cell Proliferation and Enthesis Repair

Author:

Nelson Anna-Laura1ORCID,O’Hara Kelsey M.1ORCID,Nolte Philip C.1ORCID,Fukase Naomasa1ORCID,Murata Yoichi1ORCID,Nolte Anna-Katharina1ORCID,Huard Johnny1ORCID,Bernholt David L.1ORCID,Millett Peter J.12ORCID,Bahney Chelsea S.13ORCID

Affiliation:

1. Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA

2. The Steadman Clinic, Vail, Colorado, USA

3. Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA

Abstract

Rotator cuff tears are a common soft tissue injury that can significantly decrease function of the shoulder and cause severe pain. Despite progress in surgical technique, rotator cuff repairs (RCRs) do not always heal efficiently. Many failures occur at the bone-tendon interface as a result of poor healing capacity of the tendon and failure to regenerate the native histological anatomy of the enthesis. While allografts are commercially available, clinical use is limited as they do not stimulate tissue regeneration and are associated with a structural failure of up to 40% in re-tear cases. Novel tissue engineering strategies are being developed with promise, but most involve addition of cells and/or growth factors which extends the timeline for clinical translation. Thus, there exists a significant unmet clinical need for easily translatable surgical augmentation approaches that can improve healing in RCR. Here we describe the development of a decellularized tendon matrix (DTM) putty that preserves native tendon bioactivity using a novel processing technique. In vitro, DTM promoted proliferation of tenocytes and adipose-derived stem cells with an increase in expression-specific transcription factors seen during enthesis development, Scleraxis and Sox9. When placed in a rabbit model of a chronic rotator cuff tear, DTM improved histological tissue repair by promoting calcification at the bone-tendon interface more similar to the normal fibrocartilaginous enthesis. Taken together, these data indicate that the engineered DTM putty retains a pro-regenerative bioactivity that presents a promising translational strategy for improving healing at the enthesis.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3