Silvicultural Attempts to Induce Browse Resistance in Conifer Seedlings

Author:

Kimball Bruce A.12,Pfund Fred3,Gourley Mark3,Griffin Doreen L.14,Russell John H.5

Affiliation:

1. United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA

2. Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA

3. Starker Forests, Inc., 7240 SW Philomath Boulevard, Corvallis, OR 97339, USA

4. United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA

5. British Columbia Ministry of Forests and Range, Research, Innovation and Knowledge Management Branch, Cowichan Lake Research Station, P.O. Box 335, 7060 Forestry Road, Mesachie Lake, BC, Canada V0R 2N0

Abstract

A multiyear study was conducted to determine if soil amendment combined with topical application of elemental sulfur could be employed to reduce deer browse damage to four conifer species. Fertilizer and sulfur were applied to conifer seedlings at seven sites near Corvallis, OR. Growth and browse damage data were collected for all seedlings over a period of 17 months. Additionally, foliar concentrations of monoterpenes and simple carbohydrates were assessed in western redcedar (Thuja plicata) seedlings over a period of three years. Fertilization and sulfur treatments had a moderate impact on growth and no influence on browse damage or the chemical responses. Over the course of the study, browse damage diminished while foliar monoterpene concentrations increased in redcedar. It appears that silvicultural manipulation via sulfur application and/or soil amendment cannot accelerate or alter the ontogenetical changes that may naturally defend seedlings against mammalian herbivores. In a brief trial with captive deer, redcedar browse resistance was influenced by seedling maturation, but not monoterpene content. Other maturation effects may yield significant browse protection to young seedlings.

Publisher

Hindawi Limited

Subject

Nature and Landscape Conservation,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3