Affiliation:
1. College of Electronic and Information Engineering, Henan Institute of Technology, Xinxiang 453000, China
Abstract
An image denoising method is proposed based on the improved Gaussian mixture model to reduce the noises and enhance the image quality. Unlike the traditional image denoising methods, the proposed method models the pixel information in the neighborhood around each pixel in the image. The Gaussian mixture model is employed to measure the similarity between pixels by calculating the L2 norm between the Gaussian mixture models corresponding to the two pixels. The Gaussian mixture model can model the statistical information such as the mean and variance of the pixel information in the image area. The L2 norm between the two Gaussian mixture models represents the difference in the local grayscale intensity and the richness of the details of the pixel information around the two pixels. In this sense, the L2 norm between Gaussian mixture models can more accurately measure the similarity between pixels. The experimental results show that the proposed method can improve the denoising performance of the images while retaining the detailed information of the image.
Funder
Youth Project of Henan Natural Science Foundation
Subject
Computer Science Applications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献