Effect of Measurement of Dew Point Temperature in Moist Air on the Absorption Line at 1392.53 nm of Water Vapor

Author:

Khelifa N.1ORCID

Affiliation:

1. Laboratoire Commun de Métrologie - LNE/Cnam, 61 rue du Landy, La Plaine Saint-Denis, 93210, France

Abstract

The HITRAN database (High-Resolution Transmission molecular absorption database) is an extremely helpful reference for selecting lines of molecular species. In the case of water vapor, a particular strong absorption line around λ ≈ 1392.5 nm is suitable for the detection of molecules, not only because of its high strength but also because it is well separated from the neighboring transitions, thus avoiding any overlap. First, we present the optical system that uses a distributed feedback (DFB) laser diode, emitting around λ ≈ 1392.5 nm with a power ≈ 3 mW and linewidth ≤ 10 MHz. For metrological needs, we are looking for a means to control the water vapor concentration in ambient air in near real time and especially when an optical chilled mirror hygrometer is used. The latter instrument is widely used due to its performance with regard to both accuracy and repeatability of measurements. Here, using the molecular absorption device the use of such an instrument is examined from the point of view of its impact on the measurement of relative humidity. This paper reports the measured frequency positions of the observed line at λ = 1392.5337 nm for different air pressures and compares them with the values given in the HITRAN database. In addition, we discuss the possibility of using water vapor detection by spectroscopy to observe the change of the shape and the position of the absorption line produced during measurements of the dew point temperature by the optical chilled mirror hygrometer.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3