Integrated Methods for Household Greywater Treatment: Modified Biofiltration and Phytoremediation

Author:

Waqkene Tolossa1ORCID,Mereta Seid Tiku2,Terfe Amare3,Ousman Wuhib Zeine2ORCID

Affiliation:

1. Department of Public Health, Dawo District Health Office, Southwest Shoa, Woliso, Ethiopia

2. Department of Environmental Health Science and Technology, Institute of Health, Jimma University, P.O. Box 378, Jimma, Ethiopia

3. Department of Environmental Health Science, College of Medicine and Health Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia

Abstract

Most countries around the world have experienced water scarcity in recent decades as fresh water consumption has increased. However, untreated wastewater is routinely discharged into the environment, particularly in developing countries, where it causes widespread environmental and public health problems. The majority of wastewater treatment method publications are heavily focused on high-income country applications and, in most cases, cannot be transferred to low and middle-income countries. An experimental study was conducted to evaluate the performance efficiency of pilot-scale physicochemical and biological treatment methods for the treatment of household greywater in Jimma, Ethiopia. During the experiment, grab samples of greywater were taken from the combined treatment system’s influent and effluent every 7 days for 5 weeks and analyzed within 24–48 hours. Temperature, DO, EC, turbidity, TDS, and pH were measured on-site, while BOD, COD, TSS, TP, TN PO4−3-P, NO3-N, NH4-N, Cl−, and FC were determined in the laboratory. During the five-week pilot-scale combined treatment system monitoring period, the combined experimental and control system’s mean percentage reduction efficiencies were as follows: turbidity (97.2%, 92%), TSS (99.2%, 97.2%), BOD5 (94%, 57.4%), COD (91.6%, 54.7%), chloride (61%, 35%), TN (68.24, 42.7%), TP (71.6%, 38.7%), and FC (90%, 71.1%), respectively. Similarly, the combined experimental and control systems reduced PO4−3-P (12.5 ± 3 mg/L), NO3-N (4.5 ± 3 mg/L), and NH4-N (10.19 ± 2.6 mg/L) to PO4−3-P (3.5 ± 2.6 mg/L, 7.5 ± 1.6 mg/L), NO3-N (0.8 ± 0.5, 3.6 ± 2.3 mg/L), and NH4-N (7 ± 2.9 mg/L, 15.9 ± 3.9 mg/L), respectively. From the biofiltration and horizontal subsurface flow constructed wetland combined systems, the experimental combined technology emerged as the best performing greywater treatment system, exhibiting remarkably higher pollutant removal efficiencies. In conclusion, the combined biofiltration and horizontal subsurface flow constructed wetland treatment system can be the technology of choice in low-income countries, particularly those with tropical climates.

Funder

Jimma University

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference107 articles.

1. Effectiveness of vetiver grass versus other plants for;N. Darajeh;Phytoremediation of Contaminated Water,2019

2. Technical brief on water, sanitation, hygiene and wastewater management to prevent infections and reduce the spread of antimicrobial resistance;F. A. O. Who,2020

3. Efficient management of wastewater, its treatment and reuse. Efficient manage, ent ofwastewater management;Y. Özoguz;Effic. Manag. waste water,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3