An End-to-End Lane Detection Model with Attention and Residual Block

Author:

Wang Bo1ORCID,Yan Xiaoting1ORCID,Li Deguang1ORCID

Affiliation:

1. School of Information Technology, Luoyang Normal University, Luoyang, 471934, China

Abstract

Lane detection, as one of the most important core functions in the autonomous driving environment, is still an open problem. In particular, pursuing high accuracy in complex scenes, such as no line and multiple lane lines, is an urgent issue to be discussed and solved. In this paper, a novel end-to-end lane detection model combining the advantages of attention mechanism and residual block is proposed to address the problem. A residual block alleviates the possible gradient problem. An attention block can help the proposed model centralize on where to focus in the process of learning feature representation, which can make the model itself more sensitive to the feature representation of lane lines through convolutional operations. Additionally, the U-shaped structure with three downsampling operations preserves the image resolution and the original lane line information in the image to the greatest extent. The U-shaped structure can directly output the prediction results to eliminate many complex or unnecessary calculation processes. The experimental results on two public lane detection datasets show that the lane detection performance of the proposed model can achieve high accuracy, and the corresponding weight sizes are only 2.25 M. Finally, to further explain the effectiveness of the proposed model, the unavoidable troubles encountered in the experiment are discussed.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Powered Automated Wheelchair with Lane Detection;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05

2. Efficient spatial and channel net for lane marker detection based on self-attention and row anchor;Scientific Reports;2023-11-20

3. Lane Detection with Deep Learning: Methods and Datasets;Information Technology and Control;2023-07-15

4. Eye-Gaze Controlled Wheelchair Based on Deep Learning;Sensors;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3