Damage Detection Test of GFRP Composite Civil Materials Based on Piezoelectric Ceramic Sensors

Author:

She Yanhua1ORCID,Cai Gaojie1

Affiliation:

1. School of Urban Construction, Yangtze University, Jingzhou, 434023 Hubei, China

Abstract

The piezoelectric ceramic sensor was fixed on Glass Fiber Reinforced Plastic (GFRP) composite civil materials, using the external paste method for damage detection test. The effect of the depth and number of cracks on the surface of the GFRP specimen on the signal received by the piezoelectric ceramic sensor was studied. The time-domain signal graph and energy graph based on wavelet packet were drawn, combining the active induction method and the energy method based on wavelet packet. It is found that the greater the damage degree of GFRP specimens, the smaller the voltage value of the signal, the smaller the energy of the signal, and the greater the damage index based on wavelet packet. The results showed that the active induction method can be used to collect the data of GFRP specimens by piezoelectric ceramic sensor. The collected data are processed by using the damage index principle based on wavelet packet. The maximum voltage value of the specimen, the energy of wavelet packet, and the damage index based on wavelet packet can all accurately judge the damage change of GFRP specimens. The active induction method based on piezoelectric ceramic sensor can detect the damage change of GFRP specimens in real time. It provides an effective method for damage analysis of GFRP composite civil materials.

Funder

Ministry of Housing and Urban-Rural Development

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3