Affiliation:
1. Army Engineering University, Shijiazhuang, China
2. Army Special Operations Academy, Guilin, China
Abstract
In order to solve the disadvantage of conventional structuring element (CSE) where amplitude does not change in accordance with the analyzed signal, the quantum theory is combined and a nonlinear quantum-inspired weighting structuring element (NQWSE) is proposed. The NQWSE which is utilized to extract the bearing impulse response signal can adjust its amplitude according to the mechanical signal. Firstly, after constructing the multiple quantum bits system for signals, the mapping method which is employed to map the quantum space to the real space is presented and the parameters of the mapping method are set. The nonlinear amplitude probability is calculated based on the stochastic characteristics of the bearing signals, while the dynamic amplitude is calculated based on the local feature of the bearing signals in a subwindow. Then the mathematical formula of NQWSE is derived by incorporating the mathematical expectation into the quantum theory and the mapping method. Finally, the NQWSE is applied to extract the fault information of a failure bearing. The results reveal that NQWSE can extract the bearing impulse response signals exactly.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering