Backpropagation Neural Network Artificial Intelligence Algorithm-Based Magnetic Resonance Imaging Image Feature Analysis in the General Anesthesia Hip Arthroplasty

Author:

Li Yufang1ORCID,Wang Xin2ORCID,Zhao Qian1ORCID,Zhang Xiaoqing1ORCID,Bai Manyun1ORCID

Affiliation:

1. Department of Anesthesiology, The Fourth Hospital of Changsha (Changsha Hospital of Hunan Normal University), Changsha 410006, Hunan, China

2. Department of Musculoskeletal Cancer, Hunan Cancer Hospital (The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University), Changsha 410013, Hunan, China

Abstract

Objective. This study aimed to present an investigation of the clinical significance of magnetic resonance imaging (MRI) images obtained based on the backpropagation neural network (BPNN) artificial intelligence algorithm for hip arthroplasty under general anesthesia. Methods. In this study, a case-review method was used to collect 100 patients requiring total hip replacement. They were then randomly divided into an observation group and a control group. Based on the neural network algorithm, the images of the two groups of patients were analyzed to judge their accuracy. Then the sensitivity, specificity, and accuracy of MRI images based on neural algorithms were compared with those processed by radiologists. Results. It was found that MRI processed by BP neural network had good accuracy in the diagnosis of hip joint diseases compared with CT. Meanwhile, the images processed by BP neural network had good specificity and accuracy compared with the images processed by radiologists. Conclusion. Imaging images obtained by BPNN artificial intelligence algorithm were more accurate than CT images, which had more guiding value for surgeons in operation.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application Research of Intelligent Pneumatic Control System in Industrial Automation;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

2. Characteristic Analysis of Cheerleading Self-selected Action Arrangement Elements Based on BP Neural Network;Applied Mathematics and Nonlinear Sciences;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3