Validation of Depth-Averaged Flow Model Using Flat-Bottomed Benchmark Problems

Author:

Seo Il Won1,Kim Young Do2,Song Chang Geun3

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea

2. Department of Environmental Science and Engineering, Nakdong River Environmental Research Center, Inje University, 197 Inje-ro, Gyeongnam, Gimhae 621-749, Republic of Korea

3. Department of Safety Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-772, Republic of Korea

Abstract

In this study, a shallow water flow code was developed and tested against four benchmark problems of practical relevance. The results demonstrated that as the eddy viscosity increased, the velocity slope along the spanwise direction decreased, and the larger roughness coefficient induced a higher flow depth over the channel width. The mass conservation rate was determined to be 99.2%. This value was measured by the variation of the total volume of the fluid after a cylinder break. As the Re increased to 10,000 in the internal recirculating flow problem, the intensity of the primary vortex had a clear trend toward the theoretically infinite Re value of −1.886. The computed values of the supercritical flow evolved by the oblique hydraulic jump agreed well with the analytic solutions within an error bound of 0.2%. The present model adopts the nonconservative form of shallow water equations. These equations are weighted by the SU/PG scheme and integrated by a fully implicit method, which can reproduce physical problems with various properties. The model provides excellent results under various flow conditions, and the solutions of benchmark tests can present criteria for the evaluation of various algorithmic approaches.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3