Suboptimal Regulation of a Class of Bilinear Interconnected Systems with Finite-Time Sliding Planning Horizons

Author:

de la Sen M.1,Garrido Aitor J.2,Soto J. C.3,Barambones O.2,Garrido I.2

Affiliation:

1. Department of Electricity and Electronics, Institute of Research and Development of Processes (IIDP), Faculty of Science and Technology, University of the Basque Country, Leioa (Bizkaia), P.O. Box 644, 48080 Bilbao, Spain

2. Department of Automatic Control and Systems Engineering, College of Industrial Technical Engineering (EUITI) Bilbao, University of the Basque Country, Bilbao (Bizkaia), Plaza de la Casilla 3, 48012 Bilbao, Spain

3. Department of Applied Mathematics, College of Industrial Technical Engineering (EUITI) Bilbao, University of the Basque Country, Bilbao (Bizkaia), Plaza de la Casilla 3, 48012 Bilbao, Spain

Abstract

This paper focuses on the suboptimization of a class of multivariable discrete-time bilinear systems consisting of interconnected bilinear subsystems with respect to a linear quadratic optimal regulation criterion which involves the use of state weighting terms only. Conditions which ensure the controllability of the overall system are given as a previous requirement for optimization. Three transformations of variables are made on the system equations in order to implement the scheme on an equivalent linear system. This leads to an equivalent representation of the used quadratic performance index that involves the appearance of quadratic weighting terms related to both transformed input and state variables. In this way, a Riccati-matrix sequence, allowing the synthesis of a standard feedback control law, is obtained. Finally, the proposed control scheme is tested on realistic examples.

Funder

Spanish Ministry of Education and Science

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3