OxLDL-Induced Foam Cell Formation Inhibitory Activity of Pepsin Hydrolysate of Ark Shell (Scapharca subcrenata (Lischke, 1869)) in RAW264.7 Macrophages

Author:

Marasinghe Chathuri Kaushalya1ORCID,Jung Won-Kyo23ORCID,Je Jae-Young4ORCID

Affiliation:

1. Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea

2. Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea

3. Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea

4. Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea

Abstract

Inhibitory effect of ark shell (Scapharca subcrenata (Lischke, 1869)) proteolytic hydrolysates (ASHs) on oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation was investigated. Two types of ASHs were prepared by Alcalase® and pepsin, ASAH (ark shell-Alcalase® hydrolysates), and ASPH (ark shell-pepsin hydrolysate). Oil Red O staining results showed that ASPH suppressed foam cell formation and lipid accumulation more than ASAH in oxLDL-induced foam cell formation of RAW264.7 macrophages. ASPH reduced the levels of total cholesterol, cholesterol ester, and free cholesterol in oxLDL-treated RAW264.7 macrophages. It was found that ASPH increased cholesterol efflux and decreased cholesterol influx rate. In this regard, protein expressions of CD36 and scavenger receptor class A1 (SR-A1) for cholesterol influx and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) for cholesterol efflux were investigated. ASPH treatment resulted in an increase of ABCA1 and ABCG1 expression but downregulated CD36 and SR-A1 expression. Furthermore, ASPH suppressed production of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6 and -1β, through regulating nuclear factor-kappa B (NF-κB) in oxLDL-induced foam cell formation of RAW264.7 macrophages. Taken together, our data indicate that ASPH might be a useful ingredient in functional foods for ameliorating atherosclerosis by preventing foam cell formation.

Funder

Ministry of Education, South Korea

Publisher

Hindawi Limited

Subject

Cell Biology,Pharmacology,Food Science,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3