Real-Time NURBS Interpolation under Multiple Constraints

Author:

Nie Mingxing1ORCID,Wan Yaping1ORCID,Zhou Aijun1ORCID

Affiliation:

1. School of Computer Science, University of South China, Hengyang 421001, China

Abstract

NURBS interpolation is superior to traditional linear or circular interpolation in terms of code size, surface quality, and machining efficiency. However, with the increasing demands for high-accuracy and efficient machining, NURBS interpolation has faced a growing number of challenges. Many researchers are actively involved in this field with great interest. Due to the special form of NURBS curve, there is a nonlinear relationship between its curve and arc length; feed fluctuations and mechanical shocks which are caused during the interpolation process will seriously affect the surface accuracy and quality of machined parts. To solve these problems, a real-time NURBS interpolation is proposed under multiple constraints (RNIC) in this paper. First, the formulas of the constrained feedrate under geometric errors, kinematic constraints, drive constraints, and contour errors are given. Then, the two stages for the proposed interpolation are established. The former stage is offline preprocessing stage, which aims to quickly find feedrate sensitive areas (FSAs), while the latter online stage is the real-time interpolation, which is responsible for smoothing the velocity. In the preprocessing stage, we utilized FSA scan module and feedrate adjustment module to detect the FSAs and adjust the feedrate at the start/end of each subsegment by a bidirectional scanning algorithm. Each segment contains acceleration and deceleration (some contains uniform speed) stages, which can be well matched with the processing process of acceleration and deceleration. Finally, according to the proposed method and the adaptive speed adjustment method, the simulation of a “butterfly-shaped” NURBS curve using the S-shaped ACC/DEC algorithm is carried out, which verifies the reliability and effectiveness of the proposed algorithm.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel and efficient jerk-smooth feedrate scheduling algorithm for NURBS interpolation;The International Journal of Advanced Manufacturing Technology;2023-12-08

2. NURBS Interpolator with Minimum Feedrate Fluctuation Based on Two-Level Parameter Compensation;Sensors;2023-04-07

3. Influence of Knot Vector on NURBS Interpolation;Proceedings of the 2023 8th International Conference on Intelligent Information Technology;2023-02-24

4. Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3