A New Empirical Correlation for Estimation of EBF Steel Frame Behavior Factor under Near-Fault Earthquakes Using the Genetic Algorithm

Author:

Razavi Seyed Abdonnabi1ORCID,Siahpolo Navid12ORCID,Mahdavi Adeli Mehdi1ORCID

Affiliation:

1. Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Civil Engineering, Institute for Higher Education ACECR, Khouzestan, Iran

Abstract

The most important feature of the behavior factor is that it allows the structural designer to be able to evaluate the structural seismic demand, using an elastic analysis, based on force-based principles quickly. In most seismic codes, this coefficient is merely dependent on the type of lateral resistance system and is introduced with a fixed number. However, there is a relationship between the behavior factor, ductility (performance level), structural geometric properties, and type of earthquake (near and far). In this paper, a new and accurate correlation is attempted to predict the behavior factor (q) of EBF steel frames, under near-fault earthquakes, using the genetic algorithm (GA). For this purpose, a databank consisting of 12960 data is created. To establish different geometrical properties of models, 3−, 6−, 9−, 12−, 15, and 20− story steel EBF frames were considered with 3 different types of link beam, 3 different types of column stiffness, and 3 different types of brace slenderness. Using nonlinear time history under 20 near-fault earthquake, all models were analyzed to reach 4 different performance levels. 6769 data were used as GA training data. Moreover, to validate the correlation, 2257 data were used as test data for calculating mean squared error (MSE) and correlation coefficient (R) between the predicted values of (q) and the real values. In addition, the MSE and R were calculated for correlation in the train and test data. Also, the comparison of the response of maximum inelastic displacement of 5 stories EBF from the proposed correlation and the mean inelastic time-history analysis confirms the accuracy of the estimate relationship.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3