Multimodal MRI Analysis of Brain Metabolism in Maintenance Hemodialysis Patients Based on Cognitive Computing

Author:

Zhang Yan1ORCID,Ma Hui2ORCID,Lv Xinguang1,Han Qinjun3ORCID

Affiliation:

1. Magnetic Resonance Room of Imaging Department, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi 721001, China

2. Department of Radiology, Baoji Hi-Tech Hospital, Baoji, Shaanxi 721000, China

3. Foreign College of Baoji University of Arts and Sciences, Baoji, Shaanxi 721000, China

Abstract

This paper investigates cognitive computation of brain metabolism in maintenance hemodialysis patients with multimodal MRI therapy assessment. This paper constructs a cross-individual emotion recognition method using dynamic sample entropy pattern learning. The cross-individual emotion recognition was carried out on subjects using the EEG emotion dataset SEED. The experimental results show that the proposed dynamic sample entropy-based pattern learning has better performance in cross-individual emotion recognition and exhibits better generalization and generalization ability when compared with the results of existing related studies. The constructed cognitive computing method for cross-individual emotion state recognition achieves optimization and innovation of EEG emotion pattern recognition, which can effectively predict people’s mental emotion state from EEG signals. We also explore the value of diffusion-weighted magnetic resonance imaging and dynamic enhanced magnetic resonance imaging-based volumetric measurements in assessing the efficacy of neoadjuvant therapy in maintenance hemodialysis patients. We analyze and compare the results of different studies to find the best multimodal MRI to assess the efficacy of neoadjuvant therapy in maintenance hemodialysis patients. The use of ADC value growth rates to assess neoadjuvant efficacy provides the best diagnostic efficacy and allows the screening of patients who respond well to neoadjuvant therapy while avoiding the impact of two different b-value combinations commonly used to assess neoadjuvant efficacy.

Funder

Project of Baoji Social Development Research

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3