A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud

Author:

Yannibelli Virginia1,Pacini Elina23,Monge David4,Mateos Cristian1,Rodriguez Guillermo1ORCID

Affiliation:

1. ISISTAN (UNICEN-CONICET), Tandil, Buenos Aires, Argentina

2. Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina

3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

4. ITIC, UNCUYO, Mendoza, Argentina

Abstract

The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3