Estimation of Error Variance-Covariance Parameters Using Multivariate Geographically Weighted Regression Model

Author:

Harini Sri1ORCID

Affiliation:

1. Mathematics Department, Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University Malang, East Java, Indonesia

Abstract

The Multivariate Geographically Weighted Regression (MGWR) model is a development of the Geographically Weighted Regression (GWR) model that takes into account spatial heterogeneity and autocorrelation error factors that are localized at each observation location. The MGWR model is assumed to be an error vector ε that distributed as a multivariate normally with zero vector mean and variance-covariance matrix Σ at each location ui,vi, which Σ is sized qxq for samples at the i-location. In this study, the estimated error variance-covariance parameters is obtained from the MGWR model using Maximum Likelihood Estimation (MLE) and Weighted Least Square (WLS) methods. The selection of the WLS method is based on the weighting function measured from the standard deviation of the distance vector between one observation location and another observation location. This test uses a statistical inference procedure by reducing the MGWR model equation so that the estimated error variance-covariance parameters meet the characteristics of unbiased. This study also provides researchers with an understanding of statistical inference procedures.

Funder

Research and Community Service Institutions

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3