A Hybrid Spatiotemporal Deep Learning Model for Short-Term Metro Passenger Flow Prediction

Author:

Zhang Hao1234,He Jie123ORCID,Bao Jie5,Hong Qiong6,Shi Xiaomeng123

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing, China

2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing, China

3. School of Transportation, Southeast University, 2 Dongnandaxue Rd., Nanjing, Jiangsu 211189, China

4. School of Traffic Engineering, Huaiyin Institute of Technology, Meicheng East Road #1, Huaian, Jiangsu 223001, China

5. Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Jiangjun Road #29, Nanjing, Jiangsu 211106, China

6. Business School, Huaian Vocational College of Information Technology, Meicheng East Road #3, Huaian, Jiangsu 223003, China

Abstract

The primary objective of this study is to predict the short-term metro passenger flow using the proposed hybrid spatiotemporal deep learning neural network (HSTDL-net). The metro passenger flow data is collected from line 2 of Nanjing metro system to illustrate the study procedure. A hybrid spatiotemporal deep learning model is developed to predict both inbound and outbound passenger flows for every 10 minutes. The results suggest that the proposed HSTDL-net achieves better prediction performance on suburban stations than on urban stations, as well as generating the best prediction accuracy on transfer stations in terms of the lowest MAPE value. Moreover, a comparative analysis is conducted to compare the performance of proposed HSTDL-net with other typical methods, such as ARIMA, MLP, CNN, LSTM, and GBRT. The results indicate that, for both inbound and outbound passenger flow predictions, the HSTDL-net outperforms all the compared models on three types of stations. The results suggest that the proposed hybrid spatiotemporal deep learning neural network can more effectively and fully discover both spatial and temporal hidden correlations between stations for short-term metro passenger flow prediction. The results of this study could provide insightful suggestions for metro system authorities to adjust the operation plans and enhance the service quality of the entire metro system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3