Optimization Method for Twin-Tunnel Complementary Ventilation Design and Its Energy Saving Effect

Author:

Chai Lunlei1ORCID,Wang Xing1ORCID,Han Xingbo1ORCID,Xia Yongxu1,Wang Yongdong1ORCID,Lei Ping1ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China

Abstract

Based on the compensation principle and optimization theory, an energy conservation optimization mode for twin-tunnels complementary ventilation design was proposed. And, compensation concept utilization in energy conservation of long tunnels ventilation was discussed. The energy consumption for long tunnels can be reduced significantly by remoulding longitudinal ventilation to complementary ventilation of single U-type mode or normal mode. The short-term and long-term ventilation systems of the Qingniling Tunnel, Dabieshan Tunnel, and Lianghekou Tunnel were redesigned using the optimization method, and the new scheme was compared to the original design in terms of ventilation effects, and energy consumption. In redesign, the energy consumption of short-term ventilation systems decreased 240 kW, 150 kW, and 390 kW, and energy efficiency increased by 40%, 50%, and 68.4%, respectively. In the long term, the numbers of those were 1185 kW, 1185kW, and 540 kW, and 42.5%, 58.09%, and 45%, while the pollutants concentration increased a little. The study can provide a reference for the energy efficient design of ventilation systems in long and extra-long highway tunnels.

Funder

Key Research Program of Henan Provincial Department of Transportation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3